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DEVELOPMENT AND APPLICATION OF COMPATIBLE
DISCRETIZATIONS OF MAXWELL'SEQUATIONS *

D. WHITE T, J. KONING #, AND R. RIEBEN &

Abstract.

We present the development and application of compatible felément discretizations of elec-
tromagnetics problems derived from the time dependent, fulewdaxwell equations. We review
theH (curl)-conforming finite element method, using the concepts andinotaof differential forms
as a theoretical framework. We chose this approach becaoae handle complex geometries, it is
free of spurious modes, it is numerically stable without thedr filtering or artificial diffusion, it
correctly models the discontinuity of fields across matertlriglaries, and it can be very high order.
Higher-orderH (curl) andH (div) conforming basis functions are not unique and we have designe
an extensible C++ framework that supports a variety of speicifitantiations of these such as stan-
dard interpolatory bases, spectral bases, hierarchisakband semi-orthogonal bases. Virtually any
electromagnetics problem that can be cast in the languagdfefeditial forms can be solved using
our framework. For time dependent problems a method-of-linkerae is used where the Galerkin
method reduces the PDE to a semi-discrete system of ODE'shveinethen integrated in time us-
ing finite difference methods. For time integration of waveatgns we employ the unconditionally
stable implicit Newmark-Beta method, as well as the high ordergy conserving explicit Maxwell
Symplectic method; for diffusion equations, we employ a gdizeh Crank-Nicholson method. We
conclude with computational examples from resonant caviblems, time-dependent wave propaga-
tion problems, and transient eddy current problems, all nbthusing the authors massively parallel
computational electromagnetics cdalSolve.
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Computational electromagnetics, Maxwell’s equations, arefihite elements, high order meth-
ods,H (curl) andH (div) - conforming methods, discrete differential forms, spuriousies numeri-
cal dispersion, wave propagation, transient eddy currefgstromagnetic diffusion

1. Introduction. The equations of electromagnetics can be simply and el-
egantly cast in the language of differential geometry, npreeisely in terms of
differential forms orp-forms [1], [2], [3]. In this geometrical setting, the fun-
damental conservation laws are not obscured by the defailsoodinate system
dependent notation; and, the governing equations can bemefated in a more
compact and clear way using well known differential opersaiof the exterior
algebra such as the exterior derivative, the wedge produndtthe Hodge star op-
erator, see [4] for an introduction to differential forms. this context, a natural
framework for the modeling of electromagnetics is providédr example, the
electric potentials can be represented by 0-forms; eteatril magnetic fields by
1-forms; electric and magnetic fluxes by 2-forms; and scelf@rge density by
3-forms.
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In the context of Galerkin approximations, the choice of fihge element
space plays a crucial role in the stability and convergehtteediscretization. For
instance, in numerical approximations of the magnetic dectrc field intensi-
ties,H(curl) -conforming finite element spaces (or edge elements) aferped
over traditional nodal vector spaces since they eliminateisus modes in eigen-
value computations and they prevent fictitious charge bujidh time-dependent
computations. The lowest orde(curl) -conforming basis functions were devel-
oped by Whitney [5] before the advent of finite element prografrbitrary order
versions were introduced by&slec [6],[7] as a generalization of the mixed fi-
nite element spaces introduced by P.A. Raviart and J.M. Bsdm(8] forH (div)
-conforming methods. For an extensive analysis of sew(div) -conforming
methods see [9].

Recently, Hiptmair, motivated by the theory of exteriorediga of differ-
ential forms, presented a unified framework for the conssacof conforming
finite element spaces. Remarkably, bétfcurl) andH (div) conforming finite
element spaces and the definition of their degrees of freetfafvinterpolation
operators can be derived within this framework, see [10jdore details. In sim-
ple terms the finite element basis functions satisfy disaretinterparts of the De
Rham exact sequence and related commuting diagrams. Tihigeatare of our
EMSolvesoftware closely mimics the structure of differential farnin our soft-
ware terminology, a discrete differentipiform is a finite element basis used to
discretize ap-form field. In EMSolvethe global discrete exterior derivative and
Hodge operators are sparse matrices, and the rules ofediffal forms define
how these matrices can be combined to represent discietigatf PDE’s. Given
a physical law expressed in the language of differentiahfoiit is therefore quite
straightforward to discretize the problem usiEiSolve.

One unique feature dEMSolveis the emphasis on high-order discretiza-
tion which can reduce the mesh size, memory usage, and CRir¢iquired to
achieve a prescribed error tolerance. This is particutanly for electrically large
problems. For these problems it is known that the GalerlSordtization error is
larger than the best approximation error of the finite eldrspace. This is some-
times referred to as the pollution effect, and has been meagely explained in
[11],[12]. In the engineering community this is referreda® numerical disper-
sion, as the computed phase velocity differs from the playgibase velocity and
phase error builds up linearly with respect to distance @&nd.t For the popu-
lar lowest order edge elements, it is known that the numledispersion relation
is second order accurate [13], [14],[15]. Second order r@oyumay seem ade-
guate, but for an electrically large problem the phase emay be such that the
global error is 100 percent even though the local truncagioor is quite small. A
detailed analysis of dispersion for higher-ortiicurl) finite elements on orthog-
onal Cartesian meshes is given in [16], with the result thatdispersion error is
asymptoticallyO(h?) wherek is the order of the basis functions.

It should be noted that there are numerous numerical schianesectro-
magnetics that are based in part on differential forms ateta® geometrical
concepts, such as the cell method [17], finite integrati@omy [18], [19], and
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mimetic discretizations [20]. Even the most popular metfadtime-domain
computational electromagnetics, Yee’s FDTD method [24$, lbeen reinterpreted
from a geometric perspective by numerous authors [22], [23]

2. Numerical Formulation. We begin with the generic boundary value pipb-
lem stated in the language of differential forms from [24hiSTproblem statement
is generic in that the degree of the forms are not specifiedsgifying the de-
greep we have equations involving the divergence, gradient, oraperators.
We assume a 3-dimensional dom&rwith piecewise smooth boundad{f par-
titioned intolp, 'y, andly. The problem statement is

2.1) du=(-1)c dj=-W+®in Q
(22) Tpu=f onTlp Tnj=g only
(2.3) j=%*q O W=yxyuinQ
(2.4) TMj = (_1)!3*[3 Tvu on My.

Hereu is a (p— 1)-form, o is a p-form, j is a (3— p)-form, and both¥
and® are(3— p+ 1)-forms, where I< p < 3. The variabled is a source term.
The symbolsx, 3 andy denote generic material constitutive relations (e.g. -elec
tric permittivity or conductivity). In (2.1) the operatdris the exterior derivative
which mapsp-forms to(p+ 1)-forms. In the boundary conditions (2.2) and (2.4)
the symbolT denotes the trace operator, where the tracepsf@am is an integral
over ap — 1-dimensional manifold. In (2.3) and (2.4) thesymbol denotes the
Hodge-star operator, which convegisforms to (3 — p)-forms and typically in-
volves material constitutive properties. Equations (arid (2.3) can be combined
to yield the general second-order elliptic equation

(2.5) (—1)Pd g du= —ky U+ .

The wedge product of differential forms is used in the defniof bilinear
forms. The wedge product of@form w and ag-formn is a(p+ q)-form

wp/\nq — Z(erq), p+q S 3.

If p+q=3thenwP AnYis an volumetric energy density like quantity and can
be integrated over a volume to yield energy.pH-q = 2 thenwP An%is a flux
density like quantity and can be integrated over a surfagéetd net flux.

A Galerkin finite element solution of the generic secondeortjuation (2.5)
will require bilinear forms. Using the exterior algebrae thilinear forms required
in the Galerkin finite element method can be easily formdldtem the general
second-order equation (2.5) by taking the wedge produdt avitp — 1)-form v
and integrating over the volunte,

/(—1)pd*a duAv:—/*yuAv+/ DAV
Q Q Q

Using the integration-by-parts formula

/d(n/\r]+(—1)p/ w/\dn:/ WAN
Q Q 0Q
3



yields the two key symmetric bilinear forms
(2.6) a(u,v) = / *q (duy Ady,
Q
(2.7) b(uv) = / *y UAV.
Jo
and the additional bilinear forms for source terms and bamndonditions
c(u,®) = / UA®
Q
d(u,g) = / a dUAG.
Glo)

Let #P = {ue L2(Q): ||uf|3 < e} and 7 = {ue€ 7 P:Tp(u) =0} be
generic Hilbert spaces, thﬂel|||,2) = JoUA*U+ [oduAxdu. Thenthe Galerkin
form of the generic second-order equation (2.5) can now peessed as follows:

Given the source functio and the boundary condition g, findau# P such
that

To(u) = ganda(u,v) = b(u,v) +c(u,®) +d(u,g), Yve 7.

It is not necessary to combine the two 1st-order equatidiesarsingle 2nd
order equation. If it is desired to formulate the problem asoapled pair of
1st order equations, as in a mixed method [8], [25], [26], fB&n an additional
bilinear form is required, namely

(2.8) e(u,v) = /Q wa (dU) AV,

with the requirement that is a p-form andv is a(p+ 1) form. With the generic
bilinear forms (2.6), (2.7), and (2.8), source terms, andndary conditions we
can construct a wide variety of model equations that can bedwia the finite
element method.

We are primarily concerned with time dependent phenomeniae time
derivative does not effect the degree of a form. For the geneave equation
we simply add time derivatives to (2.1) which yields
99 qi— Y . g

e dj= 5 +®in Q

In the Tonti diagram below we show the time-dependent Mabsvetjuations,
whered denotes the spatial derivativﬁ,denotes the time derivative and converg-
ing arrows denote summation. In these diagrgrissthe 0-form scalar potential;
the 1-formsA, E, andH are the magnetic vector potential, the electric field, and
the magnetic field, respectively; the 2-forlBsD, andJ are the magnetic flux
density, the electric flux density, and the electric curdntsity, respectively; and

p is the 3-form scalar charge density. The left diagram enemsgs Faraday's
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law dE — %B =0, Coulomb’s law for the magnetic fietB = 0, and the fact that
the electric fieldE can be written in terms of potentials Bs= d@— %A. The
right diagram encompasses Ampere’s k¥ — %D =J, Coulomb’s law for the

electric fielddD = p, and the continuity equatiah] — %p = 0. The two diagrams
are connected by the constitutive relatidhs- «¢ E andB = x, H.

O-forms : 0]
o
lforms: A i H
e Lo Je
2-forms: B i D i
Je IEIC
3-forms: O p i 0

A wave equation can be derived by combining the two diagramdssalving

for E,
(2.10) i(* E)=dx dE—EJ

' oz KT e
This wave equation resembles the generic second orderieqyats) with the
addition of temporal derivatives. Clearly, if it is detemad that one of the time
derivatives is small and can be neglected, the result isstremagnetic diffusion
equation (parabolic PDE). Therefore the same bilinear $of206)) and (2.7) are
required for spatial discretization of either the elliptigperbolic (wave equation)
or parabolic (diffusion equation) problem.

2.1. Local Finite Element Operations. We follow the work of Ciarlet [27]
and adhere to the definition of a finite element as a set of ttistmct objects
(%,2?,4) such that:

e 3 is the polyhedral domain over which the element is defined
e 7 is a finite dimensional polynomial space from which basiscfioms
are constructed
e 7 is a set of linear functionalPegrees of Freedopdual to?
Let >y, be a discretization of the problem doma&rusing tetrahedral, hexahedral,
or prismatic elements. By using a local change of variablesngby the iso-
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parametric mapping:'(i) = 2, we re-write the bilinear of (2.6) as follows

a(u,v) :/ *q duA dv
Q

= _ xq dundv

-3 /(*ao¢) ®* (duAdv) |DO|
pXSIN z
(2.11) -3 /(*ao¢) ®* (du) A ©* (V) |DD|.
pXSIN z
Similarly, the bilinear form of (2.7) can be rewritten as
(2.12) by = 3 / (0 ®) D" (U) A D*(v) DD,
pASIN z

Equations (2.11) and (2.12) show that all calculations Hfiervtarious bilin-
ear forms can be performed on a standard reference eléh{eat the unit cube,
tetrahedron, or prism). Results are then transformed tsipalymesh elements
(of arbitrary curvature) via a set of well defined transfotiorarules based on the
properties of differential forms. These rules are sumnearin Table 1. Given
these transformations the bases need only be evaluate@ oeféience element
and transformed accordingly. EMSolvethe bilinear form requires that the ref-
erence element, the quadrature rule, andgierm basis functions be specified
just once. The basis functions are then sampled at the quaglggoints on the
reference element, and this information is cached forrlage. This gives rise to
a very computationally efficient algorithm for computingitinelement approxi-
mations. For a given element topology and basis order, this fiznctions only
need to be computed once. Then, for every element of the sapoogy in the
mesh, the results from the reference element can simply lppadaaccording to
the transformation rules. This can significantly reduce potational time for a
typical finite element computation. In addition, integoatiover the reference el-
ement is much simpler and can often be done exactly usingsiauguadrature
of the appropriate order.

When implementing a finite element spaedn the context of differential
forms, the explicit formulation of the space depends onptfierm and the topol-
ogy of the reference element. The construction of the filgenent spacer is
not unique, we choose a construction that leads to a simplefficient imple-
mentation. We use uniformly spaced interpolatory polyradssimilar to those
described in [28] and [29] as@imitive basison a reference element. The actual
bases used in the finite element procedure are constructddsoreference ele-
ments rather than in the physical coordinate system and are wrétea linear
combination of the primitive basis. For example, non-umifanterpolatory func-
tions, moment-based functions, orthogonal functions,an all be expressed as
a linear combination of the primitive basis
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The construction of g@-form basis of ordek is as follows. We begin by
generating a primitive basi&/ = {w;}. We can then construct a new basis (non-
uniform interpolation, hierarchical, etc.) in terms of themitive bases by im-
posing a set of constraints of the form

(2.13) (Xi(Wj):6ij,

whereq; € 24 are the known degrees of freedom of the new basis. The degrees
of freedom are in general integral moments, but this is noessary. What is
necessary is that the degrees of freedom satisfy the fallgwi
e Unisolvence{a;} is dual to the finite element spage; i.e. there exists
aset{w;} C 2 such thaty(wj) = & .
¢ Invariance degrees of freedom remain unisolvent upon a change of vari-
ables; this implies they are not affected by the pullbackrafien; i.e.
d*(a;) = Gi.
e Locality: the trace of a basis function on a sub-simplex is determinyed
degrees of freedom associatauly with that sub-simplex.
The procedure requires the formation of a linear system

Vij = ai(wj); wjeW

This system, which is similar to a Vandermonde matrix, isedr mapping which
expresses the new basis in terms of the primitive basis alhtiavie a rank equal
to the dimension of the primitive basis. The newly defineddashich we will
denote a®V’ is given by:

W =Vv-iw

In EMSolve, the construction and solution of the Vandermonde systetoie
once and only once on the reference element. For the ewvatuafithe basis
functions on an actual (or global) element, they are firsiuatad on the reference
element then transformed according to the transformatitas rof Table 1, where
the “hat” symbol denotes objects defined with respect to ¢ference element
coordinate system. It is important to note that this proaegdies that the basis
functions have units as shown in Table 2. In standard nodséddb finite element
methods the basis functions are dimensionless and the wnisnthe unknown
coefficients of the basis function expansion of the field)simgply the value of a
field at a point, but here the unknowns are integrals of the.fighis seems to be a
common theme of all compatible discretization schemes ofWivdi’'s equations
whether they are based upon the finite element method giveny be mimetic
finite volume [20] and finite difference [22] methods.

We have a class hierarchy for each of fhéorm bases, the partial hierarchy
is shown in Figure 1. Concrete classes are presented intlesidevel of the tree.
The othemp-forms have a similar inheritance diagram. The completesdiarary
is documented in [30], [31], [32]. Our Silvester-Lagran§t ) bases are similar
to the bases defined in [28] which use equidistant and shéffeétistant interpo-
lation points. The difference between our SL bases and theshiroposed in [28]
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TABLE 1
Transformation rulesb*

®*(u) ®*(du)
0-forms a D®~1(d0)
1forms| DO 0 | 5gD®T(d0)
2-forms | 5 D®Ta 1o (dd)
TABLE 2

Units of Electromagnetic Quantities, Basis Functions, Begjrees-of-Freedom

Form  Basis Function Electromagnetic Quantity DOF
0-forms 1 ¢ (Voltg Volts
1-forms mt E (Volts/m) Volts
1-forms m! H (Ampgm) Amps
2-forms m—? D (Coulombgn?) | Coulombs
2-forms m—2 B (Webergn?) Webers
2-forms m-? J  (Ampgn?) Amps
2-forms m—2 ExH (Wattgm?) Watts
3-forms m-3 E-D (Joulegn?) Joules
3-forms m-3 p (Coulombgm?®) | Coulombs

is that ours satisfy the properties in Table 1. The uniforsggced interpolatory
bases are suitable for low order approximatiares, k = 1 to 4. It is well known
that this particular choice of interpolation points prodiadly conditioned mass
and stiffness matrices when high order approximations ae&l.u For this rea-
son we have implemented spectral classes that use arlsttaf interpolation
points, typically Gauss-Lobatto or Tchebyschev pointstudlg of the condition-
ing of finite element matrices using various higher-ordécurl) discretizations
is given in [33]. An additional class of semi-orthogonal isefsinctions was de-
veloped by the authors in order to increase the efficienchefethod. These
basis functions are paired with a custom quadrature ruleinomize the number
of non-zeroes in the mass matrices. This is an extensioneo$tdmdard mass-
lumping procedure widely used in computational mecharkos the special case
of an orthogonal Cartesian mesh the mass matrix is made riggesulting in
a tremendous increase in efficiency, particularly for higbreler bases applied to
time dependent problems. For unstructured meshes the foasisons are not
completely orthogonal but the number of non-zeros is deekdy a factor of
5 or more. While these inexact quadratures are often comrslder‘variational
crime”, in practice there is no loss of accuracy in the coraguolution [34].
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OF(I)rm || chlrm || 2Forlm | 3Folrm

|

|
Hexal'ledral I I Tetrahedral I I Prism

Hexahedral
[

Silvester-LagrangeI I Spectral I I Hieral:chical I I Semi-OrIthogonal

FiG. 1. p-Form basis function class hierarchy. Only part of the hrehy is shown. The general
idea is that the Application Program Interface is definedha higher levels, and the unique details
of each type of basis function are implemented at the lowalde Users can easily add new basis
functions to the class hierarchy, and the client programdneet be modified at all.

2.2. Global Finite Element Operations. The EMSolveframework com-
putes sparse matrices which are global versions of thequelyi described bi-
linear forms. The basic matrices are

(2.14) MP(a); :/ aWP WP dQ
Q

(2.15) SP(a); :/ adWP - dWP d
Q

(2.16) DP(PY) (), :/ adw? WP do
Q

which we refer to as the “mass”, “stiffness”, and “derivatimatrices, respec-
tively. The “mass” matriced/! are square symmetric positive definite, and the
“stiffness” matricesS are square symmetric positive semi-definite. These two
matrices magp-forms to p-forms. The “derivative” matrice® are rectangular
and mapp-forms to(p+ 1)-forms. It can be shown that

(2.17) DP(P+L) — M PH1K P(P+1)
(2.18) SP— (K p(p+1))T M (P K P(P+1)

whereK P(P+1) is a “topological derivative” matrix. This matrix is the digtiza-
tion of the exterior derivative operatdifrom differential geometngdwpP =W+ Jj
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This matrix depends upon the mesh connectivity, but is irddpnt of the nodal
coordinates. It does not involve an integral over the elemaamd it does not in-
volve any material properties. For the special case of dirder basis functions,
the topological derivative matrix is a mesh incidence matonsisting of 0's,
+1's, and—1's. While seemingly abstract, the topological derivativatix is
enormously valuable in practice. Giverpgorm quantityX with basis function
expansion

n
(2.19) X=9 xWP,
2
and a(p+ 1)-form quantityY with basis function expansion
< (P
(2.20) Y =5 ywP,
M

the exterior derivative (gradient, curl, divergence foe= 0, p= 1, andp = 2,
respectively) is given by

(2.21) y = KPPy,
It can be shown that

(2.22) K2k =0

(2.23) K?K?=0

which are the discrete versions of the identitiés OF = 0 and0- O x F =0,
respectively. These identities are satisfied in the disssehse, to machine pre-
cision, for any mesh and any order basis function. This isyaféature (perhaps
the definition of) a compatible discretization. It is thederitities that ensure
computed solutions of Maxwell's equations are solenoighkther in eigenmode
computations or time-dependent computations.

EMSolvecontains some additional miscellaneous functionalitysdme cir-
cumstances it is necessary to convep-form to a(3— p)—form, i.e. a Hodge-
star operation. A classic example is converting a "cellteénquantity to a
"nodal” quantity. In our finite element setting the Galerkirocedure prescribes
rectangular matrices of the form

(2.24) Hﬁ&m:/ywAM@wdQ
JQ

which produces optimal (in the least-square error sensdyetstar operators for
arbitrary order basis functions.

To summarize the overall numerical procedure employeMSolve, the
first step is to identify the corregi-form for the physical quantities. This then
dictates the particular basis function expansion of thesiglay quantity. A generic
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field variableX is then approximated over each elemEmrt 2, by a basis function
expansion of the form

(2.25) XP(rt) =Y ai®) wl(r), w’ewy

whereq; (t) are the time-dependepiform degrees of freedom’(r) are the spa-
tially dependentp-form basis functions. The semi-discrete system is formed b
applying the Galerkin procedure resulting in combinatiohthe mass matrices
M, the stiffness matriceS, the derivative and topological derivative matrid@s
andK. The result is a systematic procedure for discretizing aewidriety of
electromagnetics equations.

3. Frequency Domain Resonant Cavity Examples. The EMSolveframe-
work is well suited for simulations in the frequency domaiklere we focus
on the resonant cavity problem, where the goal is to comhéectectromag-
netic fields within closed perfectly conducting cavitieatttay contain dielectric
and/or magnetic materials. The starting point is the vad@mholtz equation for
the electric field

(3.1) dx1dE = -+ E

The electric field is chosen instead of the magnetic field beeghe perfect elec-
trical conductor conductor boundary conditiox E = 0 is trivial to implement
when using a 1-form basis function expansionEor

Using the Galerkin procedure described in Section 2, thealirsystem of
equations for the discretized eigenvalue problem is

(3.2) Sihe= —w’Mle,

wheree is the vector of 1-form degrees-of-freedom. The exact soiudf (3.1)

has irrotational eigenmodes correspondingote- 0 and solenoidal eigenmodes
corresponding to # 0, with all these modes being orthogonal. This 1-form based
discretization preserves the Helmholtz decompositiortikavith no additional
constraints. The irrotational solutions of (3.2) satisfy

(3.3) €irrotational = KOlf»

wheref is an arbitrary discrete scalar potential, and the solei@dlutions of
(3.2) satisfy

(3.4) (esolenoidaDT MK 01 — 0,

i.e. they are orthogonal to the gradients of the scalar pietenAlternative finite
element discretizations using vector nodal basis funstiscretizations intro-
duced spurious modes, i.e. modes that are not solenoidial wHs first analyzed
by Bossavit [35] and Cendes [36], and was historically theary impetus for
using edge-basdd (curl) -conforming basis functions in electromagnetics.
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Applying general purpose iterative eigenvalue solvershioH (curl) dis-
cretized Helmholtz equation is often problematic due tolénge null space of
the system. The large degeneracy of zero-eigenvalues aan itarative methods
to fail to converge on the desired smallest non-zero eigeasaThe authors have
developed a method to shift the zero eigenvalues correspgimlthe irrotational
solutions of the Helmholtz equation arbitrarily to the meldf the spectrum [37].
The implicitly restarted Arnoldi method package (ARPACRKS] is then used to
solve for the smallest extremal eigenvalues which are nawzswo.

3.1. Lowest Resonant Mode for the Trispal Induction Cell. The paral-
lel version of the ARPACK code, PARPACK, was used to deteenthe lowest
eigenvalue and eigenmode for the Trispal induction celis Tiduction cell is a
key component of a proposed proton linear accelerator [3®]aused as a metric
for various Helmholtz equation solvers. The Trispal geayneias decomposed
into a refined and optimized tetrahedral mesh and a hexdhedsh as shown in
Figure 2. The tetrahedral mesh contained 61,566 zones gB88&6dges while
the hexahedral mesh contained 26,568 zones and 84,807. eRgsglts for the

irzzz2HHH g

FiG. 2. The optimized tetrahedral mesh and unoptimized hexaheuah for the Trispal geom-
etry. The mesh is of 1/8 of the geometry.

computed lowest eigenvalue wikh= 1 basis functions compared with the mea-
sured eigenvalue, frequency=1064.415 MHz, for each messtenwn in Table 3.
The results were not any better for a higher-orkler 2 discretization, indicating
that the accuracy for this problem is limited by the disaaion of the geometry.
The goal for this type of resonant cavity problem is agredrteemeasurement to
within 0.01%, achieving this level of validation requires preciseagqent of the
CAD geometry and the test article. The z-component of theltiag eigenmode
for the hexahedral mesh is shown in Figure 3.

4. Electromagnetic Wave Equations. Consider Maxwell's equations in a
charge free region, written in the language of differerfoams

0
(4.2) *EEE = d(%,;1B) —xeE —J
12



TABLE 3
Trispal Eigenvalues

Mesh Calculated Frequency (MHZ) Relative Error (%)

Tetrahedral 1066.45 0.19
Hexahedral 1084.12 1.85

‘-

FIG. 3. The computed Z component of the lowest electric field eigéarios the Trispal geometry.

0

(4.2) 5B=—dE
(4.3) dxE=0
(4.4) dB=0

where the electric fiel& is a 1-form, the magnetic flux densiBjis a 2-form,J is
an independent 2-form current source, and each of the ragbeoperty functions
are represented by a specific Hodge function. For simpltbigyrequired bound-
ary conditions and initial conditions are not shown here aBplying the exterior
derivative operator to both (4.1) and (4.2), itis clear thatdivergence constraints
of (4.3) and (4.4) are constraints on the initial conditiohthe fields. While this
is not universally accepted, it is our opinion that a compatdiscretization of
Maxwell's equations will not require any penalty method agkange multiplier
method to satisfy the divergence constraints, they willit@risically satisfied
by the discretization of equations (4.1) and (4.2). Of ceuh® divergence con-
straints of (4.3) and (4.4) are satisfied according to a @adf, but consistent,
discrete metric. For the electric field the divergence issuead in the variational
sense

(4.5) /d*gE/\dJ:/ «EAdD,
Q Q
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for all test functions® not on the boundary, since this measure allows for the
jump discontinuity irE. For the magnetic flux density the divergence is computed
directly.

Using the procedures described in Section 2, the semiedesdkmpere-
Faraday system of equations is

@6 M Jet) = (K2 MPb(t) - MEet) - ME ()

]
50 = —K2et)

wheree(t) andb(t) are the vectors of unknown degrees-of-freedom. The diver-
gence equations are discretized as

(KD Mile=0
K%b=0

and by the compatibility properties (2.22)-(2.23) theseditions will be satisfied
automatically, to the tolerance used in the solution of tessmatrices.

There are several methods for integrating (4.6) in time staggered 2nd-
order central difference or “leapfrog” method being quitgplar. The leapfrog
method is conditionally stable and energy conserving. €apfrog method is an
example of a class of methods known as symplectic methodshw¥ere orig-
inally developed for Hamiltonian systems. A high order andrgy conserving
time-integration of (4.6) is given by a generalized symiiegpdate [40]

@.7) { - } B (ﬁQi) { N ]

wheremis the order of the symplectic integration method and theioesQ; are
of the form

(4 8) Q B | Bi At (Mél)_l(Klz)TMﬁz

' T —a AtK 12 | — aj B At?K 12 (M;.Ll)*l(Klz)TMﬁ2

andAt is the discrete time step. The specific integration coefiisia; and 3;

of (4.8) can be found in [41]. Note that the standard definitid a symplectic
integrator requires that the length of the vecteyandb, be the same, and they
are not in our case, hence we use the term symplectic loo&diraightforward
but tedious calculation shows that for suitably snilthe eigenvalues of th@;

lie on the unit circle, and the eigenvectors@fare linearly independent, hence
the time integration method is neutrally stable. The sitgtiibndition is given by

(4.9) At < 2 =1,
/P (i B K32 (M)LK I2)TMZ2)
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wherep denotes the spectral radius of the matrix, and in practiteishesti-
mated by performing a few power-method iterations to ederttae largest eigen-
value. Stated another way, (4.9) requires that the samfslragiency (determined
by At) must be less than half the highest resonant frequency daphgal dis-
cretization. The stability condition of (4.9) is valid foll @alues ofk, the or-
der of the polynomial basis functions. However kais increased, the value of
p (K2 (M (K1?%)TMZ?) (and hence the highest resonant frequency of the
spatial discretization) will grow, thus requiring a smatiene stepAt. For the spe-
cial case of lossless materials and no energy enteringygsthie volume through
the bounding surface the total electromagnetic energyldhmiconstant. With
this class of symplectic time integration the instantaseenergy stored in the
electric and magnetic fields is

(4.10) e'Mte+b"M22b = £ + O(Atk )sin(at),

the energy oscillates about the constant value This is in contrast to non-
symplectic methods such as Runge-Kutta, in which the erisrgynonotonically

decaying function. In [42] it is shown that the symplecticdafe method can
be extended to include electric and magnetic conductifétyexample artificial

Perfectly Matched Layers.

4.1. Transmission in a Bent Optical Fiber. There is great interest in ana-
lyzing the performance of bent optical fibers [43], [44]. Aaltbend can be an-
alyzed using efficient paraxial beam propagation methoels tve demonstrate
an accurate full wave simulation of a fiber with an extremedbeWe visualize
the propagation of an optical pulse along al®tsection of a step index optical
fiber. The core of the fiber has a radius pf®and an index of refraction of.471
while the cladding has a radius of dfdand an index of refraction of.456. With
these properties, the fiber is capable of propagatihg=al.55um optical wave.
The ratio of problem domain size to wavelength is therefoyd = 100 making
this an “electrically large” problem. The problem is exditeith a space and
time dependent Dirichlet boundary condition applied toitiprit cap of the fiber
representing a TEOL polarized pulse.

We perform the simulation using a straight fiber as referemzkfour bent
fibers with different bend angles. Because the problem idridally large, it will
be subject to the cumulative errors of numerical dispersiormitigate this effect,
we use high order polynomial basis functions of dedree? in conjunction with
a high order symplectic (energy conserving) integratorrdeom = 3 which has
been shown to excel at reducing the effects of numericakdsspn for electrically
large time domain problems [40]. The computational mesketmh of the five
simulations consists of 14200 hexahedral elements with 4 transverse elements
per wavelength, an example of which is shown in Figure 4. @silgh order
k = 2 basis functions on this mesh results in a semi-discregatisystem (4.6)
consisting of 3562 160 electric field unknowns and 347,072 magnetic flux
density unknowns. This relatively large problem must tfeeebe solved in a
parallel computational environment. In Figure 5 we plotrtbemalized energy in
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FiG. 4. Example of bent optical fiber medleft) and snapshot of the electromagnetic energy in
the 30 degree bent fiber at time-t0.4ps.

the fiber core, computed by (4.10), as a function of time faheaaf the five fiber
simulations. The energy is hormalized to the total energhebptical pulse. As
expected, the total pulse energy is conserved. As the fibenis the energy in the
core is lost due to radiation in the cladding as the pulsests®s the bend. This
effect becomes more drastic as the bend angle increases éinteancreases.

—— Total Pulse Energy
—— Straight Fiber Core Energy
15 Deg. Bent Fiber Core Energy
0.7- \ ) 30 Deg. Bent Fiber Core Energy | |
. \ —— 45 Deg. Bent Fiber Core Energy
—— 60 Deg. Bent Fiber Core Energy
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FiG. 5. Normalized core energy as a function of time for five fiber fatmns.

4.2. 3D Photonic Crystal Waveguide. Here we simulate a 3D PBG waveg-
uide with a complete photonic band-gap designed to openatieei RF regime.
The PBG crystal is based on the “woodpile” structure as ityated by [45]. In
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particular, we utilize the unit cell originally proposed 6] which consists of
a series of aluminum rods (index of refractien3.1) arranged in an alternating,
stacked configuration. The lattice constant for this ciysta 123tmand the unit
cell has dimensions of.12mby 1.123mby 1.272m making it suitable for
operation in the radio frequency regime. We construct a 3/8tal by arranging
the unit cell in a 9 by 13 by 7 layer configuration as shown irukég6. Our goal
is to exploit the complete photonic band gap of this crystal ereate a “multi-
bend” wave guide where we can make the radio signal traverseéparate 90
degree bends in three dimensional space. Because of thet@i2 & the multi-
bend, this type of simulation cannot be performed usingdstech2D codes which
are extensively used in the study of PBG devices. In additimstworthy sim-
ulations of PBG waveguides require that phase velocitigzrapagating waves
be computed as accurately as possible. A high order methiberisfore highly
desirable for an electrically large waveguide such as this.

The computational mesh of Figure 6 consists of B8P8 hexahedral ele-
ments. We excite the problem with a time dependent Diridideindary condition
applied at the«-z input plane with an operating frequency of@Hiz The rest of
the mesh is terminated with a PEC boundary condition. We igdedrderk = 2
basis functions to represent the electric and magneticsfigdulting in a linear
system with approximately 18 million unknowns. This large linear systems re-
quires that the problem be distributed in parallel across @focessors. We let
the simulation run for a total of 600 time steps. In Figure 7 we show a three
dimensional iso-surface plot of the electric field magnétid the wave guide at
the end of the simulation. Note how the wave has made two catmpD degree
bends with a negligible loss due to radiation.

8.904 cm

FiG. 6. 3D PBG “woodpile” structure for FiG. 7. Three dimensional iso-surface
RF signals. The portion of the mesh representplot of electric field magnitude for the 3D PBG
ing the air has been removed for visual clarity. simulation.

4.3. Simulation of Magnetic Resonance Imaging. When a magnetic field
penetrates a conducting object, eddy currents are prodiitesse eddy currents
modify the magnetic field resulting in a non-uniform magaoédield in the con-
ductor. This fact is of significant relevance in the field ofgnatic resonance
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imaging (MRI) where the characterization of field non-unifities inside of a
human head are of great research interest. In a typical Mpgraxent, a very
large (1-8 Tesla) and static magnetic field (called Bfefield) is used to align
the magnetic moments of atomic nuclei inside of a humandissumple. A sec-
ondary pulsed RF field (called thgd field) is used to tip the magnetic moments
when turned on. When turned off, the magnetic moments relak batheir
original state, emitting radiation that is detected by anr&eiver. TheB1 field
determines image intensity and imaging algorithms assusgagally uniform
B1 field; non-uniformBL1 fields lead to artificial variation in image intensity. If
the actual non-uniform magnetic field were known, it mighpbssible to correct
for this in the image processing.

Unlike the previous examples which involved propagatioa inoss-less re-
gion, this application requires the introduction of a lot=yn due to finite electri-
cal conductivity. Also, the goal here is to reach a sinudaitiady-state solution,
and due to the fine mesh a very large number of time steps weutdduired if
conditionally stable time integration method were used.théeefore employ an
implicit time integration method. In particular, we use ifmplicit Newmark-Beta
method given by

dt
(4.11) (M eHHBASTL + M },1> Eni1 = (2Mgl_ (1- 2B)At28ﬁ}1) en
dt .
- <M§1+ Bat’s;h — EM}Q) en_1—dt?MY’

Note that this is a fully discrete version of the second oelectric field wave
equation (2.10) with the addition of a lossy conductive term

In this example we us&MSolveto compute the eddy currents and non-
uniform magnetic field inside a téh conducting, dielectric sphere immersed in
a spatially uniform and time varying 20@Hz Bl magnetic field. The external
B1 field is created by a pair of Helmholtz coils, driven by a 20BlMsinusoidal
current source represented by fheerm in (4.11). A human head is modeled by
a conducting dielectric sphere of conductivity= 0.5S/mand dielectric constant
85¢p as shown in Figure 8. The fully discrete (4.11) is solved forea physical
time equal to 10 periods &1 field oscillation, enough time for the induced eddy
currents to reach a steady state. In Figure 9 we show theéddzddy currents and
the resulting non-uniform magnetic field inside of the sph&fote the appearance
of the so called “central-brightening” effect in the madadield magnitude, a
result in agreement with the theoretical calculations @1,[f48]. Results such as
these can be used to calibrate MRI images to account for theunidormity of
theBL1 field.

5. Electromagnetic Diffusion Equations. Solution of the Ampere-Faraday
system of equations (4.1)-(4.2) are electromagnetic wthagtspropagate at the
speed of light in the medium. However in many applications tiime scales
are such that it is not desired to resolve the wave natureeofidhds. In some
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FiG. 8. Conducting dielectric sphere rep- Fic. 9. Computed eddy currents
resenting a human head placed between twdvertical plang and non-uniform magnetic field
Helmholtz coils. (horizontal planginside of conducting dielec-

tric sphere.

problems the electric field satisfies

(5.1)

0
*SEE’ < |*gE]|

and the*E%E term can be neglected without serious consequence. This is a
definition of a good conductor, for example copper vtk 8.854- 1012 and
0 =5.76-10 is a good conductor for frequencies up to the MHz range. Tée el
tric field is not zero in a good conductor, rather the corréatesnent is that in a
good conductor the displacement current is negligible @exbto the conduction
current. To continue with the copper example, a dimensianalysis indicates
a characteristic field diffusion time af= oplL? wherelL is the characteristic di-
mension of the block. Using = 41t- 107 andL = 1m, this diffusion time is
several orders of magnitude longer than the time it take&Mavave to traverse
the conductor. By not resolving the EM wave, we do not havieiltiaconditions
or accuracy conditions that involve the speed of light. T&ithe motivation for
ignoring the displacement current term.

Neglecting the displacement current, Maxwell's equatioesome

(5.2) d(x, 1B) —*E—J=0

3
(5.3) EB_ —dE
(5.4) dxgE=0
(5.5) dB=0

Note that (5.4) is not independent from (5.2), it is a consege of the identity
ddy = 0 (we assume the independent source satiglfles 0 also.) Likewise,
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(5.5) is not completely independent of (5.3), as clearly vikhave dB = 0 for
all time if it is satisfied initially. While not necessary, wélemploy potentials to
solve this problem. Equation (5.5) implies that dAfor some magnetic vector
potentialA. ReplacingB with dAin (5.3) givesE = —%A— dewhereg@is some
scalar electric potential. At preseqtis somewhat arbitrary, angcan be made
to agree with the standard electrostatic potential by eirigrthe Coulomb gauge
condition onA, resulting in

(5.6) dxgA=0

Combining these equations gives a diffusion equatiomfor

(5.8) *O%A = 01 dA—xgde—J,
which along with the the constraints (5.6) and (5.7) and eppate boundary
conditions provides a well-posed PDE. Note that as in therdiization of the
full-wave Maxwell’'s equations in Section 4, the divergemoastraint on the 1-
form field, in this case (5.6), will be implicitly satisfiedrfall time if it is initially
satisfied. The advantage of this formulation compared tbl dvased method or
an E-based method is that the electrostatic potengiappears explicitly in the
PDE, this is useful in solving engineering problems in whicé voltage across
a conductor is the known boundary condition. The disadgpntd theA-¢ ap-
proach is of course the required elliptic solve for (5.7)t With the advent of
scalable multi-grid solvers this is less of an issue thasétto be.

Again using the definitions in Section 2, the semi-discrejaations are
given by

(5.9) Mg!—a=—Sita— DI +jt
(5.10) Sy = 0

wherea is the vector of degrees-of-freedom Af v is the vector of degrees-
of-freedom ofg, andj andf are the discrete volume and surface source terms,
respectively.

GivenA, it is possible to compute the magnetic flux den&fythe electric
field E, and the electric current densily SinceA is a 1-form andB is a 2-form
andB = 0 x Awe have

(5.11) b=K'%a.

This is a purely topological operation, no integration ortenial properties are
involved. The computation d is also trivial, usinge to denote the degrees-of-
freedom for the electric field, the semi-discrete electetdfequation is

_ 0 01,
(5.12) e= ata K™ .
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If required, a 2-form electric curredtcan be computed frod = oE, this is an
example of a Hodge-star operation and requires the inverdia “mass” matrix.

For the numerical time integration, we apply a generalizexh&-Nicholson
method by averaging a first-order forward difference at tmveith a first-order
backward difference at timg—+ 1). The averaging is performed with a weighting
parameten, where 0< a < 1, such that

0 Explicit, 1st Order Accurate Forward Euler
a=1< 1/2 Implicit, 2nd Order Accurate Crank Nicholson
1 Implicit, 1st Order Accurate Backward Euler

The fully discrete equations are given by

(5.13) L0y =10

(5.14) (M(l,1+aAtSﬁ}1> Bni1 = (Mgl— (1—a)Atsﬁ}1) an
—MD%%y o + Atjt

(5.15) bni1= Klzan+1
(5.16) €nta = —1/At (81 —an) — KOan+u
(5.17) M iglj nta = Henq

where it is assumed that the boundary conditions and cuscemtes can be eval-
uated at = n+a. Note that to maintain second order accuracy for all vagspl
the magnetic potentiah and the magnetic fluB are known at whole times,
whereas the electric potenti@land the electric fiel& are known at intermediate
times(n+a). For some problems, striving for accuracy by using: 1/2 will
lead to oscillations in the computed solution, and in sudesat is necessary to
use standard Backward Euler £ 1).

5.1. Electromagnetic Heating and Forces in a Simple Rail Gun Model.

In this example we use the vector potential formulation & #hectromagnetic
diffusion equations to compute tlex B forces andl - E joule heating in a simple
rail-gun model. A rail-gun is a device used to launch prajestusing only elec-

tromagnetic energy and accurate characterization of #etremagnetic forces
and heating is required for trustworthy modeling. The raih gnodel consists of
two conducting rails and a sliding armature placed betwaemt Note that in

this simple simulation, the motion of the armature is noetakito account, we
are simply computing the transient eddy currents and magfields for the case
of a fixed armature. The motion of the armature will effectfibils when the ve-
locity is comparable to the diffusion time. The rails and atane are placed in a
cubic mesh representing the air. In reality, the condugtivi the air is essentially
zero, however due to the nature of the FEM discretizationcamot simply set
this term to zero in the air region, so we make it significasthyaller (7 orders of
magnitude) than the conductivity of the rails and armatbivibile not an elegant
solution, this great disparity in conductivity is a goodttefsthe proposed formu-
lation. The problem is driven by applying a constant voltdiffierence across the
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rail inputs. Attimet = 0, the scalar Poisson equation is solved via a fast multi-gri
method to compute the static scalar potential everywhespate. This in turn
induces transient eddy currents and magnetic fields whiabdugly build over
time to steady state value as shown in Figure 10. The fullgrdis vector poten-
tial equation (5.15) using = 1/2 is solved at every time step using a diagonally
scaled Pre-conditioned Conjugate Gradient (PCG) methtidanielative residual
error tolerance of 10'°. This linear solver required an average of 300 PCG iter-
ations, in spite of the large contrast in conductivity valuBCG worked well for
this relatively modest problem with 16280 elements ang 500 000 unknowns,
but for larger problems PCG is impractical; a scalable mgtitfisolver tuned for
the x O0x operator should be used [49] [50]. In Figure 11 we plot the poted
vector force field and scalar Joule heat field for two diffél@mature positions.
Note that a net outward force is generated and the Joulenggatstrongest at the
corners of the armature contact position. Note also thateaartmature is moved
further along the rails, the net inductance and resistafi¢heorail gun circuit
increases, causing the induced force and heat to decrease.

FIG. 10. Computed scalar potentialgft) and steady state eddy currents and magnetic fields
(right) in a simple rail gun model.

6. Conclusions. When the Galerkin finite element method is applied to elec-
tromagnetics problems using the standard nodal shapeiduedhe results are
quite disappointing, and fail to converge for even trivieblglems. While adding
penalty terms or Lagrange multipliers involving the divemge of the fields im-
proves the situation, these methods cannot be considetgdiarhental cure. The
problem is not with the Galerkin procedunger se but with the choice of finite
element basis functions. Numerous researchers have gupasiousH (curl)
-conforming andH (div) -conforming based finite element basis functions that re-
sultin provably stable discrete variational formulatiafi®lectromagnetics prob-
lems. Aspects of differential forms such as exact sequenaes had a signifi-
cant impact on the development of these basis functionsdditian, we believe
that differential forms provide a unified way for organiziagd implementing a
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FIG. 11. Computed Xk B force field and JE joule heating for two different armature positions.

sophisticated simulation code so that it can be used to soliele class of prob-
lems, in fact virtually any problem that can be expressetiérianguage of differ-
ential forms. This has been demonstrated in the contexeotreimagnetics with
the EMSolvecode. However not all PDE’s can be simply cast in the langudge
differential forms. Developing compatible discretizatsadfor multi-physics prob-
lems, that involve not just curl and divergence equatiortsatgo advection of
materials and fields, is likely to be an important area ofrieinesearch.
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